Yingjie

资产定价因子序列相关检验

薛英杰 / 2024-02-05


因子自相关性检验

向量自回归模型如下:

\[ MKT_t=\alpha_1+\beta_{11}MKT_{t-1}+\beta_{12}SMB_{t-1}+\beta_{13}HML_{t-1}+\beta_{14}CMA_{t-1}+\beta_{15}RMW_{t-1}+\epsilon_1\\ SMB_t=\alpha_2+\beta_{21}MKT_{t-1}+\beta_{22}SMB_{t-1}+\beta_{23}HML_{t-1}+\beta_{24}CMA_{t-1}+\beta_{25}RMW_{t-1}+\epsilon_2\\ HML_t=\alpha_3+\beta_{31}MKT_{t-1}+\beta_{32}SMB_{t-1}+\beta_{33}HML_{t-1}+\beta_{34}CMA_{t-1}+\beta_{35}RMW_{t-1}+\epsilon_3\\ CMA_t=\alpha_4+\beta_{41}MKT_{t-1}+\beta_{42}SMB_{t-1}+\beta_{43}HML_{t-1}+\beta_{44}CMA_{t-1}+\beta_{45}RMW_{t-1}+\epsilon_4\\ RMW_t=\alpha_5+\beta_{51}MKT_{t-1}+\beta_{52}SMB_{t-1}+\beta_{53}HML_{t-1}+\beta_{54}CMA_{t-1}+\beta_{55}RMW_{t-1}+\epsilon_5 \]

pacman::p_load(AER,readxl,dynlm,vars,quantmod,scales,fGarch,dplyr)
load("D:\\Rblogdown\\content\\cn\\2024-02-05-factor-autregresion\\VAR.RData")
fama<-Famafactor|>
  mutate(TradingMon=as.yearmon(TradingMon))

MKT<-ts(fama$MKT,start = c(1994,1),end = c(2023,9),frequency = 12)
SMB<-ts(fama$SMB,start = c(1994,1),end = c(2023,9),frequency = 12)
HML<-ts(fama$HML,start = c(1994,1),end = c(2023,9),frequency = 12)
CMA<-ts(fama$CMA,start = c(1994,1),end = c(2023,9),frequency = 12)
RMW<-ts(fama$RMW,start = c(1994,1),end = c(2023,9),frequency = 12)

VARdat<-window(ts.union(MKT,SMB,HML,CMA,RMW))
VAR_est=VAR(y=VARdat,p=1)
summary(VAR_est)
## 
## VAR Estimation Results:
## ========================= 
## Endogenous variables: MKT, SMB, HML, CMA, RMW 
## Deterministic variables: const 
## Sample size: 356 
## Log Likelihood: 3404.231 
## Roots of the characteristic polynomial:
## 0.1893 0.1893 0.05119 0.03509 0.03509
## Call:
## VAR(y = VARdat, p = 1)
## 
## 
## Estimation results for equation MKT: 
## ==================================== 
## MKT = MKT.l1 + SMB.l1 + HML.l1 + CMA.l1 + RMW.l1 + const 
## 
##         Estimate Std. Error t value Pr(>|t|)   
## MKT.l1  0.042835   0.059319   0.722  0.47071   
## SMB.l1 -0.403571   0.147453  -2.737  0.00652 **
## HML.l1 -0.309570   0.228101  -1.357  0.17560   
## CMA.l1 -0.250213   0.212329  -1.178  0.23943   
## RMW.l1 -0.618601   0.254041  -2.435  0.01539 * 
## const   0.011194   0.005453   2.053  0.04083 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.1004 on 350 degrees of freedom
## Multiple R-Squared: 0.03567,	Adjusted R-squared: 0.0219 
## F-statistic: 2.589 on 5 and 350 DF,  p-value: 0.02565 
## 
## 
## Estimation results for equation SMB: 
## ==================================== 
## SMB = MKT.l1 + SMB.l1 + HML.l1 + CMA.l1 + RMW.l1 + const 
## 
##          Estimate Std. Error t value Pr(>|t|)   
## MKT.l1  0.0002074  0.0281070   0.007  0.99412   
## SMB.l1 -0.0105199  0.0698670  -0.151  0.88040   
## HML.l1 -0.3444600  0.1080804  -3.187  0.00157 **
## CMA.l1  0.2389761  0.1006073   2.375  0.01807 * 
## RMW.l1  0.0278996  0.1203713   0.232  0.81684   
## const   0.0079815  0.0025837   3.089  0.00217 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.04758 on 350 degrees of freedom
## Multiple R-Squared: 0.04306,	Adjusted R-squared: 0.02939 
## F-statistic:  3.15 on 5 and 350 DF,  p-value: 0.008532 
## 
## 
## Estimation results for equation HML: 
## ==================================== 
## HML = MKT.l1 + SMB.l1 + HML.l1 + CMA.l1 + RMW.l1 + const 
## 
##         Estimate Std. Error t value Pr(>|t|)  
## MKT.l1 -0.009590   0.015404  -0.623    0.534  
## SMB.l1 -0.027933   0.038291  -0.730    0.466  
## HML.l1  0.001731   0.059234   0.029    0.977  
## CMA.l1  0.093732   0.055138   1.700    0.090 .
## RMW.l1 -0.035270   0.065970  -0.535    0.593  
## const   0.001449   0.001416   1.023    0.307  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.02608 on 350 degrees of freedom
## Multiple R-Squared: 0.01158,	Adjusted R-squared: -0.002538 
## F-statistic: 0.8202 on 5 and 350 DF,  p-value: 0.5359 
## 
## 
## Estimation results for equation CMA: 
## ==================================== 
## CMA = MKT.l1 + SMB.l1 + HML.l1 + CMA.l1 + RMW.l1 + const 
## 
##         Estimate Std. Error t value Pr(>|t|)   
## MKT.l1 -0.006086   0.018608  -0.327  0.74380   
## SMB.l1 -0.073182   0.046254  -1.582  0.11451   
## HML.l1 -0.079912   0.071552  -1.117  0.26483   
## CMA.l1  0.192539   0.066605   2.891  0.00408 **
## RMW.l1 -0.142425   0.079689  -1.787  0.07476 . 
## const   0.002986   0.001710   1.746  0.08171 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.0315 on 350 degrees of freedom
## Multiple R-Squared: 0.03997,	Adjusted R-squared: 0.02626 
## F-statistic: 2.914 on 5 and 350 DF,  p-value: 0.0136 
## 
## 
## Estimation results for equation RMW: 
## ==================================== 
## RMW = MKT.l1 + SMB.l1 + HML.l1 + CMA.l1 + RMW.l1 + const 
## 
##         Estimate Std. Error t value Pr(>|t|)
## MKT.l1 -0.014404   0.015324  -0.940    0.348
## SMB.l1  0.030230   0.038092   0.794    0.428
## HML.l1  0.095813   0.058926   1.626    0.105
## CMA.l1 -0.054469   0.054852  -0.993    0.321
## RMW.l1  0.105589   0.065628   1.609    0.109
## const  -0.001144   0.001409  -0.812    0.417
## 
## 
## Residual standard error: 0.02594 on 350 degrees of freedom
## Multiple R-Squared: 0.0251,	Adjusted R-squared: 0.01118 
## F-statistic: 1.803 on 5 and 350 DF,  p-value: 0.1116 
## 
## 
## 
## Covariance matrix of residuals:
##            MKT        SMB        HML        CMA        RMW
## MKT  1.008e-02  0.0009944 -3.129e-05  0.0014764 -3.922e-04
## SMB  9.944e-04  0.0022641 -3.473e-04  0.0005074 -6.999e-04
## HML -3.129e-05 -0.0003473  6.801e-04  0.0001830  1.178e-05
## CMA  1.476e-03  0.0005074  1.830e-04  0.0009923 -2.543e-04
## RMW -3.922e-04 -0.0006999  1.178e-05 -0.0002543  6.730e-04
## 
## Correlation matrix of residuals:
##          MKT     SMB      HML     CMA      RMW
## MKT  1.00000  0.2081 -0.01195  0.4667 -0.15054
## SMB  0.20810  1.0000 -0.27990  0.3385 -0.56699
## HML -0.01195 -0.2799  1.00000  0.2228  0.01741
## CMA  0.46672  0.3385  0.22281  1.0000 -0.31120
## RMW -0.15054 -0.5670  0.01741 -0.3112  1.00000